Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 2-Methoxy-1-methyl-4-nitro-1H-imidazole

#### Maciej Kubicki<sup>a</sup>\* and Paweł Wagner<sup>b</sup>

<sup>a</sup>Department of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, and <sup>b</sup>Nanomaterials Research Centre and, MacDiarmid Institute for Advanced Materials and Nanotechnology, Massey University, Private Bag 11 222, Palmerston North, New Zealand

Correspondence e-mail: mkubicki@amu.edu.pl

Received 31 May 2007; accepted 4 June 2007

Key indicators: single-crystal X-ray study; T = 90 K; mean  $\sigma$ (C–C) = 0.001 Å; R factor = 0.033; wR factor = 0.091; data-to-parameter ratio = 14.0.

The molecule of the title compound, C<sub>5</sub>H<sub>7</sub>N<sub>3</sub>O<sub>3</sub>, is approximately planar. The maximum deviation from the least-squares plane calculated for all non-H atoms is 0.054 (2) Å. The dihedral angles between the mean plane of the imidazole ring [planar within 0.0017 (6) Å] and the planes of the nitro and methoxy groups are 2.9 (1) and 1.2 (1)°, respectively. The molecules are held together by weak C-H···N and C- $H \cdot \cdot \cdot O$  interactions and by van der Waals forces.

#### **Related literature**

This is a part of our studies of intermolecular interactions in 4nitroimidazole derivatives (e.g. Kubicki, 2004, and references therein). Related literature: Kulkarni et al. (1987); Suwiński & Wagner (2007).



#### **Experimental**

Crystal data C<sub>5</sub>H<sub>7</sub>N<sub>3</sub>O<sub>3</sub>  $M_r = 157.14$ 

Monoclinic,  $P2_1/c$ a = 3.9935 (4) Å

b = 15.4223 (13) Å c = 11.1724 (8) Å  $\beta = 99.710 \ (7)^{\circ}$ V = 678.24 (10) Å<sup>3</sup> Z = 4

Data collection

| Kuma KM-4 CCD four-circle            | 6537 measured reflections            |
|--------------------------------------|--------------------------------------|
| diffractometer                       | 1791 independent reflections         |
| Absorption correction: multi-scan    | 1514 reflections with $I > 2\sigma($ |
| (SORTAV; Blessing, 1989)             | $R_{\rm int} = 0.019$                |
| $T_{\min} = 0.988, T_{\max} = 0.991$ |                                      |
|                                      |                                      |

Refinement

 $\begin{array}{l} R[F^2>2\sigma(F^2)]=0.033\\ wR(F^2)=0.091 \end{array}$ 128 parameters All H-atom parameters refined S = 1.08 $\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$ 1791 reflections

Mo  $K\alpha$  radiation

 $0.15 \times 0.1 \times 0.1$  mm

 $2\sigma(I)$ 

 $\mu = 0.13 \text{ mm}^{-1}$ 

T = 90 (1) K

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                   | D-H                                    | $H \cdot \cdot \cdot A$                | $D \cdots A$                              | $D - \mathbf{H} \cdot \cdot \cdot A$   |
|--------------------------------------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------|----------------------------------------|
| $C11-H11A\cdots O42^{i}$ $C11-H11C\cdots O41^{ii}$ $C5-H5-N2^{ii}$ | 0.967 (15)<br>0.947 (17)<br>0.928 (14) | 2.713 (15)<br>2.633 (17)<br>2.670 (14) | 3.6751 (13)<br>3.4342 (13)<br>2.5154 (12) | 173.0 (11)<br>142.6 (12)<br>150.2 (11) |
| $C3 - H3 \cdots N3$ $C21 - H21C \cdots O2^{iii}$                   | 0.938(14)<br>0.984(15)                 | 2.670 (14)<br>2.720 (15)               | 3.6841 (12)<br>3.6841 (13)                | 166.5 (11)                             |
| Symmetry codes:<br>-x + 3, -y + 2, -z + 1                          | (i) $-x + 1, y$                        | $v + \frac{1}{2}, -z + \frac{3}{2};$   | (ii) $x, -y + \frac{3}{2}$                | $, z + \frac{1}{2};$ (iii)             |

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2054).

#### References

Blessing, R. H. (1989). J. Appl. Cryst. 22, 396-397.

- Kubicki, M. (2004). J. Mol. Struct. 696, 67-73.
- Kulkarni, S., Grimmett, M. R., Hanton, L. R. & Simpson, J. (1987). Aust. J. Chem. 40, 1399-1413.
- Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Version 1.169. Oxford Diffraction, Wrocław, Poland.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Suwiński, J. & Wagner, P. (2007). In preparation.

supplementary materials

Acta Cryst. (2007). E63, o3120 [doi:10.1107/S1600536807027201]

## 2-Methoxy-1-methyl-4-nitro-1*H*-imidazole

### M. Kubicki and P. Wagner

#### Comment

The molecule of 1-methyl-2-methoxy-4-nitroimidazole, (I), (Fig. 1, Scheme 1) is almost planar, contrary to its analogue 1-methyl-4-nitro-5-methoxyimidazole, (II), that was determined at 100 K (Kulkarni *et al.*, 1987; CCDC-258086). In (II) the methoxy and and the nitro groups are twisted by 57.55 (14) and by 7.90 (12)°, respectively. These larger twists are obviously concomitant to the steric interactions that have a profound effect on the crystal packing.

In (I), there are weak hydrogen bonds that interconnect molecules into layers (Fig. 2). In (II), on the other hand, the C—H···A interactions (A = O or N) are somewhat stronger (the H···O distances are in the range 2.38 Å – 2.57 Å, H···N is 2.54 Å. Additionally, a  $\pi$ - $\pi$  interaction with the interplanar distance of 3.275 (2)Å (the distance between the ring centroids is 3.629 (2) Å) is also present in the structure of (II).

#### **Experimental**

The title compound was synthesized by *ipso* nucleophilic replacement of nitro group from 2,4-dinitro-1-methyl imidazole in methanol-sodium methoxide solution with a yield (*ca*. 54%). The detailed synthesis will be described elsewhere (Suwiński & Wagner, 2007).

#### Refinement

All the hydrogen atoms were discernible in the difference Fourier maps and were freely refined.

#### **Figures**



Fig. 1. Title molecule with anisotropic displacement parameters at the 50% probability level. The hydrogen atoms are drawn as spheres with arbitrary radii.

Fig. 2. The layer of the title molecules with C—H···O and C—H···N hydrogen bonds depicted as dashed lines. The view is approximately along the direction [100]. Symmetry codes: (i) x,y,z; (ii): x,3/2 - y,1/2 + z; (iii) x,3/2 - y,-1/2 + z; (iv) 1 - x,-1/2 + y,3/2 - z; (v) 1 - x,1 - y,1 - z; (vi) 1 - x,-1/2 + y,1/2 - z.

## 2-Methoxy-1-methyl-4-nitro-1H-imidazole

| Crystal data                   |                                              |
|--------------------------------|----------------------------------------------|
| C5H7N3O3                       | $F_{000} = 328$                              |
| $M_r = 157.14$                 | $D_{\rm x} = 1.539 {\rm ~Mg~m}^{-3}$         |
| Monoclinic, $P2_1/c$           | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc           | Cell parameters from 5503 reflections        |
| <i>a</i> = 3.9935 (4) Å        | $\theta = 3-24^{\circ}$                      |
| <i>b</i> = 15.4223 (13) Å      | $\mu = 0.13 \text{ mm}^{-1}$                 |
| c = 11.1724 (8) Å              | T = 90 (1)  K                                |
| $\beta = 99.710 \ (7)^{\circ}$ | Prism, colourless                            |
| $V = 678.24 (10) \text{ Å}^3$  | $0.15 \times 0.1 \times 0.1 \text{ mm}$      |
| Z = 4                          |                                              |

#### Data collection

| Kuma KM-4 CCD four-circle<br>diffractometer                   | 1791 independent reflections           |
|---------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                      | 1514 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                       | $R_{\rm int} = 0.019$                  |
| T = 90(1)  K                                                  | $\theta_{\text{max}} = 30.0^{\circ}$   |
| ω scans                                                       | $\theta_{\min} = 3.2^{\circ}$          |
| Absorption correction: multi-scan<br>(SORTAV; Blessing, 1989) | $h = -5 \rightarrow 5$                 |
| $T_{\min} = 0.988, T_{\max} = 0.991$                          | $k = -21 \rightarrow 20$               |
| 6537 measured reflections                                     | $l = -7 \rightarrow 15$                |

#### Refinement

| Refinement on $F^2$                                     | Secondary atom site location: difference Fourier map                                |
|---------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                              | Hydrogen site location: difference Fourier map                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.033$                         | All H-atom parameters refined                                                       |
| $wR(F^2) = 0.091$                                       | $w = 1/[\sigma^2(F_o^2) + (0.0584P)^2 + 0.0288P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.08                                         | $(\Delta/\sigma)_{\text{max}} = 0.001$                                              |
| 1791 reflections                                        | $\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$                                 |
| 128 parameters                                          | $\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$                              |
| Drimory store site location, structure inverient direct |                                                                                     |

Primary atom site location: structure-invariant direct Extinction correction: none

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

|      | x            | у           | Ζ           | $U_{\rm iso}*/U_{\rm eq}$ |
|------|--------------|-------------|-------------|---------------------------|
| N1   | 0.9835 (2)   | 0.86207 (6) | 0.74562 (7) | 0.01581 (19)              |
| C11  | 1.0726 (3)   | 0.93772 (7) | 0.82410 (9) | 0.0195 (2)                |
| H11A | 0.915 (4)    | 0.9850 (9)  | 0.8026 (12) | 0.028 (3)*                |
| H11B | 1.295 (4)    | 0.9564 (10) | 0.8185 (13) | 0.034 (4)*                |
| H11C | 1.060 (4)    | 0.9218 (11) | 0.9051 (15) | 0.037 (4)*                |
| C2   | 1.0365 (2)   | 0.85322 (6) | 0.62825 (8) | 0.0154 (2)                |
| O2   | 1.19492 (18) | 0.91689 (5) | 0.57922 (6) | 0.01867 (18)              |
| C21  | 1.2306 (3)   | 0.90098 (7) | 0.45370 (9) | 0.0183 (2)                |
| H21A | 1.008 (3)    | 0.8990 (9)  | 0.4044 (12) | 0.024 (3)*                |
| H21B | 1.356 (3)    | 0.8470 (9)  | 0.4504 (12) | 0.021 (3)*                |
| H21C | 1.361 (4)    | 0.9506 (10) | 0.4307 (13) | 0.029 (3)*                |
| N3   | 0.9215 (2)   | 0.78040 (5) | 0.57663 (7) | 0.01595 (19)              |
| C4   | 0.7856 (2)   | 0.74043 (6) | 0.66772 (8) | 0.0159 (2)                |
| N4   | 0.6282 (2)   | 0.65768 (6) | 0.64766 (7) | 0.01753 (19)              |
| O41  | 0.6293 (2)   | 0.62136 (5) | 0.54923 (7) | 0.0250 (2)                |
| O42  | 0.49664 (19) | 0.62600 (5) | 0.73091 (7) | 0.02218 (19)              |
| C5   | 0.8197 (2)   | 0.78822 (6) | 0.77259 (8) | 0.0162 (2)                |
| Н5   | 0.760 (3)    | 0.7775 (9)  | 0.8489 (12) | 0.022 (3)*                |

## Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(A^2)$

```
Atomic displacement parameters (\text{\AA}^2)
```

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|-----|------------|------------|------------|-------------|------------|-------------|
| N1  | 0.0179 (4) | 0.0188 (4) | 0.0110 (4) | 0.0008 (3)  | 0.0032 (3) | -0.0002 (3) |
| C11 | 0.0241 (5) | 0.0215 (5) | 0.0130 (5) | -0.0015 (4) | 0.0036 (4) | -0.0034 (4) |
| C2  | 0.0159 (4) | 0.0199 (5) | 0.0109 (4) | 0.0023 (3)  | 0.0033 (3) | 0.0017 (3)  |
| 02  | 0.0245 (4) | 0.0205 (4) | 0.0122 (3) | -0.0035 (3) | 0.0065 (3) | -0.0002 (2) |
| C21 | 0.0218 (5) | 0.0232 (5) | 0.0107 (4) | -0.0008 (4) | 0.0050 (3) | 0.0006 (3)  |
| N3  | 0.0180 (4) | 0.0185 (4) | 0.0116 (4) | 0.0011 (3)  | 0.0034 (3) | 0.0013 (3)  |
| C4  | 0.0171 (4) | 0.0187 (4) | 0.0122 (4) | 0.0009 (3)  | 0.0031 (3) | 0.0011 (3)  |
| N4  | 0.0199 (4) | 0.0205 (4) | 0.0125 (4) | 0.0007 (3)  | 0.0035 (3) | 0.0004 (3)  |
| O41 | 0.0360 (4) | 0.0250 (4) | 0.0150 (4) | -0.0049 (3) | 0.0073 (3) | -0.0058 (3) |
| O42 | 0.0279 (4) | 0.0240 (4) | 0.0162 (4) | -0.0036 (3) | 0.0082 (3) | 0.0031 (3)  |
| C5  | 0.0180 (4) | 0.0192 (5) | 0.0117 (4) | 0.0009 (3)  | 0.0035 (3) | 0.0013 (3)  |

Geometric parameters (Å, °)

| N1—C2 | 1.3699 (12) | C21—H21A | 0.965 (14) |
|-------|-------------|----------|------------|
| N1—C5 | 1.3722 (13) | C21—H21B | 0.975 (14) |

# supplementary materials

| N1—C11        | 1.4668 (12) | C21—H21C      | 0.984 (15)  |
|---------------|-------------|---------------|-------------|
| C11—H11A      | 0.967 (15)  | N3—C4         | 1.3771 (12) |
| C11—H11B      | 0.946 (17)  | C4—C5         | 1.3714 (13) |
| C11—H11C      | 0.947 (17)  | C4—N4         | 1.4234 (13) |
| C2—N3         | 1.3097 (13) | N4—O41        | 1.2348 (11) |
| C2—O2         | 1.3347 (12) | N4—O42        | 1.2428 (11) |
| O2—C21        | 1.4542 (11) | С5—Н5         | 0.938 (14)  |
| C2—N1—C5      | 106.49 (8)  | H21A—C21—H21B | 112.4 (11)  |
| C2—N1—C11     | 126.19 (8)  | O2—C21—H21C   | 105.2 (8)   |
| C5—N1—C11     | 127.27 (8)  | H21A—C21—H21C | 110.7 (12)  |
| N1-C11-H11A   | 111.6 (8)   | H21B—C21—H21C | 110.9 (11)  |
| N1-C11-H11B   | 109.8 (9)   | C2—N3—C4      | 102.19 (8)  |
| H11A—C11—H11B | 109.6 (13)  | C5—C4—N3      | 113.33 (9)  |
| N1—C11—H11C   | 108.6 (10)  | C5—C4—N4      | 126.43 (9)  |
| H11A—C11—H11C | 107.2 (13)  | N3—C4—N4      | 120.23 (8)  |
| H11B—C11—H11C | 110.0 (13)  | O41—N4—O42    | 123.61 (9)  |
| N3—C2—O2      | 127.27 (8)  | O41—N4—C4     | 118.63 (8)  |
| N3—C2—N1      | 114.05 (8)  | O42—N4—C4     | 117.76 (8)  |
| O2—C2—N1      | 118.68 (8)  | C4—C5—N1      | 103.93 (8)  |
| C2—O2—C21     | 113.70 (7)  | C4—C5—H5      | 132.7 (9)   |
| O2—C21—H21A   | 109.0 (8)   | N1—C5—H5      | 123.3 (9)   |
| O2—C21—H21B   | 108.3 (8)   |               |             |
| C5—N1—C2—N3   | 0.10(11)    | C2—N3—C4—N4   | 179.52 (8)  |
| C11—N1—C2—N3  | -177.50 (9) | C5—C4—N4—O41  | -177.26 (9) |
| C5—N1—C2—O2   | -179.74 (8) | N3—C4—N4—O41  | 2.98 (13)   |
| C11—N1—C2—O2  | 2.67 (14)   | C5—C4—N4—O42  | 2.78 (14)   |
| N3—C2—O2—C21  | 1.33 (13)   | N3—C4—N4—O42  | -176.99 (8) |
| N1-C2-O2-C21  | -178.86 (8) | N3—C4—C5—N1   | 0.34 (11)   |
| O2—C2—N3—C4   | 179.92 (9)  | N4-C4-C5-N1   | -179.44 (9) |
| N1—C2—N3—C4   | 0.10 (10)   | C2—N1—C5—C4   | -0.25 (10)  |
| C2—N3—C4—C5   | -0.28 (11)  | C11—N1—C5—C4  | 177.31 (9)  |

## Hydrogen-bond geometry (Å, °)

| D—H···A                                                                                                            | <i>D</i> —Н | H···A      | $D \cdots A$ | D—H···A    |  |
|--------------------------------------------------------------------------------------------------------------------|-------------|------------|--------------|------------|--|
| C11—H11A····O42 <sup>i</sup>                                                                                       | 0.967 (15)  | 2.713 (15) | 3.6751 (13)  | 173.0 (11) |  |
| C11—H11C···O41 <sup>ii</sup>                                                                                       | 0.947 (17)  | 2.633 (17) | 3.4342 (13)  | 142.6 (12) |  |
| C5—H5···N3 <sup>ii</sup>                                                                                           | 0.938 (14)  | 2.670 (14) | 3.5154 (12)  | 150.2 (11) |  |
| C21—H21C···O2 <sup>iii</sup>                                                                                       | 0.984 (15)  | 2.720 (15) | 3.6841 (13)  | 166.5 (11) |  |
| Symmetry codes: (i) $-x+1$ , $y+1/2$ , $-z+3/2$ ; (ii) $x$ , $-y+3/2$ , $z+1/2$ ; (iii) $-x+3$ , $-y+2$ , $-z+1$ . |             |            |              |            |  |



Fig. 2

